
 

TECHNOPEX-2025 Institut Teknologi Indonesia                                         ISSN: 2654-489X 

359 

 

MENEMBUS CONTROL-FLOW ENFORCEMENT TECHNOLOGY (CET) DAN 

BRANCH TARGET IDENTIFICATION (BTI) DENGAN FUNCTION-ORIENTED 

PROGRAMMING (FOP) (Studi kasus: Linux kernel) 

 
Suryo Bramasto 1), Muhammad Ramli 1) 

1) Program Studi Teknik Informatika Institut Teknologi Indonesia  
E-mail: suryo.bramasto@iti.ac.id  

Abstrak 
Perlindungan pada CPU mutakhir telah memperkenalkan berbagai rintangan. ARM telah memiliki 

mekanisme "Pointer Authentication" dan "Branch Target Identification" untuk menangani otentikasi 

alamat memori dan pointer, dan kemudian Intel telah menindaklanjutinya dengan mekanisme Shadow 

Stack dan Indirect Branch Targeting, yang juga dikenal sebagai Control-Flow Enforcement 

Technology. Perlindungan ini membuat hampir mustahil untuk menggunakan metode code reuse biasa 

seperti return-oriented programming (ROP) dan jump oriented programming (JOP). Penelitian ini 

menunjukkan pendekatan baru untuk menggunakan Function-Oriented Programming (FOP) sebagai 

teknik untuk digunakan dalam lingkungan tersebut. Demonstrasi FOP dalam kernel Linux menunjukkan 

kemampuan FOP untuk unggul dalam situasi dunia nyata yang kompleks. 

Kata kunci: function-oriented programming, gadgets, kernel, linux, proteksi. 

Pendahuluan 
Pada Return-Oriented Programming (ROP), penyerang menguasai tumpukan panggilan 

untuk membajak alur kendali program, lalu mengeksekusi rangkaian instruksi mesin yang telah 

dipilih dengan cermat, dan sudah ada di memori mesin, yang disebut gadget [1]. Setiap gadget 

biasanya diakhiri dengan instruksi pengembalian dan terletak di dalam subrutin dalam kode program 

dan/atau pustaka yang sudah ada. Jika dirangkai bersama, gadget-gadget ini memungkinkan 

penyerang untuk melakukan operasi acak pada mesin yang menerapkan pertahanan yang dapat 

menggagalkan serangan. Return-Oriented Programming (ROP) telah ada selama lebih dari 15 tahun 

[2]. Sejak saat itu, teknik penggunaan ulang kode lainnya telah terbukti berhasil dalam keadaan 

tertentu seperti Jump Oriented Programming (JOP) [3]. Seiring berkembangnya kedua teknik ini 

dalam dekade terakhir, perlindungan baru telah diciptakan untuk membatasi kegunaannya. Beberapa 

di antaranya termasuk Control-Flow Enforcement Technology (CET) [4] untuk prosesor Intel dan 

Pointer Authentication (PAC) serta Branch Target Identification (BTI) [5] untuk prosesor ARM. 

Tujuan dari perlindungan ini adalah untuk membatasi penggunaan serangan penggunaan ulang kode 

seperti ROP dan JOP dalam suatu program. 

BTI melibatkan penerapan langsung tujuan pendaratan spesifik untuk cabang tidak langsung, 

baik berupa instruksi lompatan/panggilan register maupun memori. Biasanya ditempatkan di awal 

fungsi yang rentan terhadap referensi tidak langsung, direktif landing pad ini berfungsi sebagai 

pengaman. Pada prosesor Intel, instruksi landing pad ini adalah `ENDBR64`. Jika lompatan atau 

panggilan tidak langsung gagal mendarat pada instruksi yang ditentukan, sebuah trap akan dipicu. 

Langkah perlindungan ini bertujuan untuk mengurangi efektivitas serangan JOP. Functional 

Oriented Programming (FOP) melibatkan penggunaan seluruh fungsi sebagai gadget. Berbeda 

dengan konsep "gadget" dalam skenario ROP atau JOP, yang biasanya hanya terdiri atas beberapa 

instruksi, seperti "POP RDI; RET;" klasik, FOP memperluas gadget untuk mencakup seluruh fungsi. 

Tujuan pemanfaatan seluruh fungsi sebagai gadget adalah untuk memanfaatkan dua 

kemampuan dari fungsi. Pertama, kemampuan untuk memanfaatkan suatu fungsi sebagaimana 

mestinya. Contohnya, dengan mengendalikan dua parameter pemanggilan fungsi, seperti strcpy, 

manipulasi nilai dalam memori menjadi mungkin; dan dapat diperluas ke fungsi apa pun yang 

menyertakan instruksi landing pad awal di Glibc, seperti `mprotect` atau `syscall`. Kemampuan 

kedua diperoleh melalui efek samping yang muncul dari pemanggilan suatu fungsi. Karena register 

parameter biasanya dianggap volatil, memulihkan atau melindunginya tidak ada gunanya. Hal ini 

mengakibatkan nilai register parameter berpotensi berguna setelah pemanggilan fungsi. 

 

mailto:suryo.bramasto@iti.ac.id


 

TECHNOPEX-2025 Institut Teknologi Indonesia                                         ISSN: 2654-489X 

360 

 

 

Kemampuan yang dijelaskan bergantung pada gadget dispatcher yang andal. Dalam contoh 

yang disebutkan sebelumnya, dispatcher tidak boleh mengubah register-register dari argumen yang 

sangat rentan berubah di antara pemanggilan gadget FOP. Makalah ini mengkaji dispatcher semacam 

itu yang biasanya ditemukan dalam Glibc, dan dipanggil dalam eksekusi normal. Karena 

pemanggilan fungsi dispatcher tidak memerlukan parameter, register parameter tidak diatur ulang di 

antara pemanggilan. Hal ini memungkinkan gadget FOP berikutnya untuk menggunakan parameter 

register yang ditetapkan oleh pemanggilan sebelumnya. Dengan menggunakan kerentanan kerusakan 

memori dan dispatcher ini, rantai FOP dapat dibangun untuk mendapatkan eksekusi. 

Studi Pustaka  
Function-Oriented Programming (FOP) adalah evolusi dari kelas serangan code-reuse yang 

sebelumnya dikenal lewat ROP (Return-Oriented Programming) dan JOP (Jump-Oriented 

Programming). Ketika mitigasi seperti DEP/NX dan ASLR mencegah eksekusi kode yang 

disuntikkan serta berbagai mekanisme lain memperkecil peluang gadget-level chaining, FOP muncul 

sebagai pendekatan yang bekerja pada tingkat fungsi penuh: bukannya merangkai potongan instruksi 

kecil (gadgets), FOP menyusun “program” jahat dengan memanggil fungsi-fungsi yang sudah ada di 

binary atau library target. Karena menggunakan blok yang lebih besar dan mengikuti ABI/prolog-

epilog fungsi yang wajar, urutan panggilan fungsi yang dimanipulasi bisa tampak lebih natural dan 

sulit dideteksi oleh teknik yang hanya mencari pola gadget. 

Secara konseptual, proses FOP melibatkan identifikasi fungsi-fungsi yang berguna, misalnya 

fungsi I/O, alokasi memori, atau fungsi yang mengubah state, yang bila dikombinasikan dapat 

mencapai tujuan seperti mengambil data sensitif atau memicu tindakan tertentu. Berbeda dengan 

ROP/JOP yang fokus pada instruksi individu, FOP membutuhkan cara untuk memaksa program 

memanggil fungsi-fungsi tersebut dalam urutan dan dengan argumen yang dikontrol, seringkali 

melalui korupsi struktur data atau kontrol alur yang memengaruhi bagaimana dan kapan fungsi 

dipanggil. Karena level abstraksinya lebih tinggi, FOP dapat melewati beberapa deteksi yang 

dirancang khusus untuk gadget-level reuse dan menimbulkan tantangan baru bagi sistem mitigasi 

yang hanya memeriksa target loncatan atau pola instruksi. 

Secara formal, definisi kelas serangan FOP, terkategori menjadi kemampuan fungsi yang 

bermanfaat bagi penyerang dan menunjukkan skenario teoretis atau simulasi di mana chaining fungsi 

dapat memenuhi tujuan eksploitasi. Telah terdapat analisis tentang bagaimana mitigasi modern 

seperti Control-Flow Integrity (CFI), shadow stacks, dan proteksi mikroarsitektur mempengaruhi 

kemungkinan FOP, serta titik-kelemahan yang masih ada. Selain itu, perlu evolusi alat deteksi dan 

teknik analisis otomatis. Detektor dan generator exploit generasi berikutnya perlu memahami 

semantik fungsi dan representasi menengah (misal p-code/IR) agar dapat mengevaluasi kombinasi 

fungsi yang mungkin disalahgunakan. 

FOP memperluas permukaan serangan code-reuse karena banyak program memiliki fungsi-

fungsi yang, bila disusun bersama, dapat mencapai efek kompleks tanpa gadget-level chaining. 

Mitigasi tradisional yang efektif melawan ROP/JOP tidak selalu cukup terhadap FOP; misalnya, CFI 

yang hanya membatasi target control-flow mungkin masih mengizinkan urutan pemanggilan fungsi 

yang sah namun disalahgunakan. Oleh karena itu, deteksi otomatis harus berevolusi untuk 

mempertimbangkan konteks pemanggilan fungsi dan semantik panggilan, bukan sekadar pola 

instruksi. 

Dari perspektif defensif, memahami FOP penting untuk merancang proteksi yang lebih 

efektif. Pendekatan defensif yang diusulkan meliputi penerapan CFI yang lebih halus dan berbasis 

konteks (memverifikasi tidak hanya target pemanggilan tetapi juga konteks dan tipe argumen), 

monitoring perilaku semantik untuk mendeteksi urutan panggilan fungsi yang tidak biasa, 

pembatasan permukaan API sensitif melalui prinsip least privilege dan pemisahan hak istimewa, 

serta penggunaan sandboxing dan teknik isolasi lain untuk membatasi dampak potensi 

penyalahgunaan fungsi. Selain itu, penggabungan analisis statis dan dinamis yang memahami  

 



 

TECHNOPEX-2025 Institut Teknologi Indonesia                                         ISSN: 2654-489X 

361 

 

 

representasi menengah kode dapat membantu mengidentifikasi kombinasi fungsi yang 

memungkinkan tindakan berbahaya. 

Metodologi Penelitian  
Metodologi penelitian yang diterapkan pada artikel ini diawali dengan menetapkan definisi 

formal dan model ancaman FOP, guna merumuskan bagaimana serangan ini berbeda dari ROP/JOP 

dan menetapkan asumsi-asumsi lingkungan misal ketersediaan fungsi di binary/library dan 

kemampuan pengendalian data/struktur untuk memengaruhi pemanggilan fungsi). Selanjutnya 

dilakukan inventarisasi dan klasifikasi building blocks pada tingkat fungsi yakni mengidentifikasi 

kategori fungsi yang berguna bagi penyerang (I/O, alokasi/manipulasi memori, kontrol proses), 

menganalisis ABI/calling-convention, dan bagaimana argumen dapat dikontrol melalui korupsi data 

atau rekayasa struktur program. 

Guna menemukan kandidat fungsi dan mengevaluasi apakah fungsi-fungsi itu dapat 

“dirangkai”, metodologi yang dipakai meliputi analisis statis (disassembly, pembuatan CFG, 

pencarian simbol/ekspor, analisis p-code/IR) dan analisis dinamis (instrumentasi runtime untuk 

mengamati perilaku fungsi dan efek sampingnya). Automatic tooling digunakan untuk scanning 

library/binary mencari fungsi yang memenuhi prasyarat tertentu. Selanjutnya disusun proof-of-

concept atau skenario simulasi (dalam lingkungan terisolasi) yang menunjukkan bagaimana chaining 

fungsi dapat mencapai goal tertentu, misal membaca berkas sensitif atau memicu eksekusi proses, 

kemudian mengevaluasi efektivitas mitigasi modern (CFI, ASLR, NX/DEP, shadow stacks, 

SMEP/SMAP, dan lain-lain) terhadap teknik FOP. 

Terakhir, disusun rangkuman implikasi defensif dengan merekomendasikan perbaikan 

seperti CFI yang lebih halus/berbasis-konteks, monitoring semantik urutan panggilan, dan 

pengurangan permukaan API, serta menunjukkan kebutuhan alat deteksi dan analisis otomatis yang 

mengerti semantik fungsi (bukan hanya pola gadget instruksi) agar mitigasi dapat berkembang 

menghadapi serangan bergranularitas-fungsi. 

Hasil dan Pembahasan  
Versi Linux kernel yang menjadi target pada penelitian ini adalah 5.19.17 (November 2022), 

dimana telah mendukung penuh implementasi CET, dukungan penuh terhadap IBT untuk landing 

pad, berikut mekanisme proteksi baru seperti fungsi prepare_kernel_cred. Mekanisme-mekanisme 

proteksi yang ada pada kernel versi “baru” (setelah 5.18) membatasi rantai serangan ROP secara 

signifikan dengan menerapkan mekanisme new check terhadap fungsi-fungsi yang sering menjadi 

target serangan. Pada setiap serangan di tingkat kernel, keberhasilan serangan sangat bergantung 

pada ketersediaan celah kerentanan yang memungkinkan utilisasi target-target potensial, dimana 

pada kernel versi setelah 5.18 telah terdapat juga mekanisme yang menutup celah-celah kerentanan. 

Dampak FOP terhadap kernel merupakan salah satu poin utama penelitian ini. Kemampuan 

untuk mencapai serangan yang efektif menggunakan FOP gadgets, alih-alih ROP gadgets atau JOP 

gadgets, merupakan definisi implementasi FOP yang sukses. Penelitian ini mengkaji primitif FOP 

dalam target Libc untuk ruang pengguna, sehingga tidak terdapat perincian lengkap primitif untuk 

bagian kernel Linux. Karena fleksibilitas dan variasi primitif berkorelasi langsung dengan jumlah 

gadget yang ditemukan, basis kode yang lebih besar menyiratkan besarnya kapabilitas yang sama 

atau lebih besar dibandingkan dengan primitif Libc. Mengingat kernel Linux berisi gadget hampir 

sepuluh kali lebih banyak, penelitian ini menduga bahwa terdapat gadget yang cukup untuk 

mendemonstrasikan primitif yang sama seperti yang diidentifikasi sebelumnya. Satu aspek tambahan 

yang perlu diperhatikan adalah bahwa meskipun jumlah fungsi dan gadget potensial lebih besar, 

tidak ada identifikasi gawai yang memungkinkan kemampuan untuk memanfaatkan nilai yang 

disimpan dalam RAX. Keterbatasan ini terdapat baik di ruang pengguna maupun di ruang kernel 

untuk sistem Intel. Gambar 1 menunjukkan rantai FOP akhir yang digunakan dalam kernel Linux 

yang menghasilkan Linux privilege escalation. 

 



 

TECHNOPEX-2025 Institut Teknologi Indonesia                                         ISSN: 2654-489X 

362 

 

 
Gambar 1. Rantai kernel FOP di dalam memori 

Kerentanan ini memungkinkan kerusakan memori melalui luapan heap, dimana penyerang 

dapat mengendalikan struktur "msg_msg", yang mengakibatkan kebocoran kernel Linux dan alamat 

heap kernel sehingga dapat melewati KASLR. Hal ini kemudian memungkinkan penimpaan struktur 

"pipe_buffer" beserta "_ops pointer", yang mengakibatkan pemanggilan fungsi arbitrer dengan 

register RSI yang menunjuk ke memori yang dikendalikan. PoC awal menerapkan teknik ini untuk 

pivot tumpukan ke RSI dan memulai rantai ROP. Dalam contoh FOP ini, pivot ke dispatcher FOP 

justru terjadi. Masalah yang muncul adalah tidak adanya identifikasi dispatcher FOP yang berasal 

dari RSI selama pengujian. Untuk mengatasi masalah ini, diperlukan penggunaan perangkat pivot 

dari RSI ke RDI seperti yang ditunjukkan pada Gambar 2, yang memungkinkan penggunaan 

dispatcher yang ditunjukkan pada Gambar 1. 

 

 
Gambar 2. Gadget dari RSI pivot ke RDI 

Setelah dispatcher dimulai, proses normal eskalasi kernel pun dimulai. Rantai FOP yang 

ditunjukkan menggunakan fakta bahwa kontrol argumen pertama dalam panggilan ke 

"prepare_kernel_cred" dengan argumen bernilai nol, mengembalikan salinan struktur kredensial 

kernel. Tidak ada gadget yang memiliki kemampuan untuk menggunakan nilai dalam register RAX. 

Dengan kata lain, struktur kredensial kernel yang dibuat oleh prepare_kernel_cred yang 

dikembalikan dalam RAX tidak berguna. Namun, "prepare_kenel_cred" memiliki efek samping 

menyimpan struktur "init_cred" dalam register RSI setelah fungsi tersebut. Memindahkan pointer ke 

RDI dan memanggil "commit_cred" memungkinkan rantai FOP untuk menetapkan privilage saat ini 

ke root, sehingga menyelesaikan privilage escalation. 

Kemampuan terakhir yang diciptakan adalah untuk berhasil kembali ke ruang pengguna 

sebagai elevated user. Pendekatan ROP untuk kembali ke ruang pengguna adalah dengan menyimpan 

status penyimpanan dalam tumpukan terkontrol dan kembali menggunakan fitur kernel yang 

dirancang untuk kembali ke ruang pengguna. Agar tetap valid dengan spesifikasi tumpukan bayangan 

yang ditetapkan sejauh ini, tidak ada modifikasi pada tumpukan yang dapat terjadi selama serangan,  



 

TECHNOPEX-2025 Institut Teknologi Indonesia                                         ISSN: 2654-489X 

363 

 

 

sehingga pendekatan ini tidak layak. Ada dua pendekatan yang dapat dilakukan rantai FOP untuk 

kembali ke ruang pengguna. Yang pertama adalah merancang dispatcher di sepanjang rantai FOP 

dan keluar dengan aman setelah semua eskalasi hak istimewa selesai. Hal ini dimungkinkan karena 

kernel akan menganggap bahwa semuanya telah berjalan dengan benar karena tidak ada modifikasi 

yang terjadi pada tumpukan atau ruang memori. Tetapi karena perangkat dispatcher yang digunakan 

menggunakan R12 sebagai mekanisme penghitungan, maka menjadi ini tidak layak. Hal ini dapat 

ditentukan melalui pengujian dan dengan melihat dispatcher pada Gambar 1 dan mengidentifikasi 

bahwa register R12 diatur oleh RDI dan RSI. Dalam kasus ini, dispatcher RSI dan RDI mengarah ke 

memori yang dikendalikan, sehingga R12 menjadi angka substansial yang tidak realistis untuk 

diiterasi. Pendekatan kedua adalah memanfaatkan teknik telefork. 

Teknik telefork beroperasi dengan memanggil fork system call dari dalam kernel. 

Selanjutnya, tindakan ini memunculkan thread kedua di dalam aplikasi ruang pengguna tepat di titik 

tempat eksploitasi awalnya berhenti. Sementara itu, thread asli tetap berada di dalam kernel Linux 

dan diatur untuk menunggu tanpa batas waktu melalui fungsi msleep. Pengaturan ini mengakibatkan 

kernel thread berhenti terkunci dan menciptakan kesan bahwa tidak ada yang berubah dari perspektif 

eksternal. Karena pendekatan ini hanyalah pemanggilan fungsi normal, pendekatan ini merupakan 

target utama untuk digunakan oleh FOP. Aspek terakhir ini memungkinkan serangan FOP untuk 

berhasil kembali ke ruang pengguna, sehingga menghasilkan Linux privilage escalation yang 

berhasil, yang dimungkinkan hanya dengan menggunakan gadget FOP. 

Kesimpulan  
Demonstrasi serangan FOP yang bekerja di dalam kernel Linux menunjukkan kemampuan 

FOP untuk bekerja di lingkungan dunia nyata yang kompleks, dan membantu memperkuat FOP 

sebagai teknik potensial yang ampuh untuk eksploitasi di masa mendatang dalam lingkungan modern 

yang membatasi ROP dan serangan code reuse lainnya. Kontribusi ini digabungkan untuk memenuhi 

pedoman penelitian ini dalam mendemonstrasikan kegunaan dan kapabilitas FOP. 

Ucapan Terima kasih  
Penelitian ini dibiayai oleh Institut Teknologi Indonesia Tahun Akademik 2025/2026. 

Daftar Pustaka 

[1] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN,” in Proceedings of the 

49th Annual International Symposium on Computer Architecture, New York, NY, 

USA: ACM, Jun. 2022, pp. 685–698. doi: 10.1145/3470496.3527429. 

[2] S. Ognawala, F. Kilger, and A. Pretschner, “Compositional Fuzzing Aided by Targeted 

Symbolic Execution,” Oct. 2019. 

[3] R. C. Goluch, “Trust, transforms, and control flow: A graph-theoretic method to 

verifying source and binary control flow equivalence,” Iowa State University, 2021. doi: 

10.31274/etd-20210609-59. 

[4] M. Lipp et al., “Meltdown,” Commun ACM, vol. 63, no. 6, pp. 46–56, May 2020, doi: 

10.1145/3357033. 

[5] S. Matsuoka, “Fugaku and A64FX: the First Exascale Supercomputer and its Innovative 

Arm CPU,” in 2021 Symposium on VLSI Circuits, IEEE, Jun. 2021, pp. 1–3. doi: 

10.23919/VLSICircuits52068.2021.9492415. 


