TECHNOPEX-2025 Institut Teknologi Indonesia ISSN: 2654-489X

MENEMBUS CONTROL-FLOW ENFORCEMENT TECHNOLOGY (CET) DAN
BRANCH TARGET IDENTIFICATION (BTI) DENGAN FUNCTION-ORIENTED
PROGRAMMING (FOP) (Studi kasus: Linux kernel)

Suryo Bramasto Y, Muhammad Ramli ¥
1) Program Studi Teknik Informatika Institut Teknologi Indonesia
E-mail: suryo.bramasto@iti.ac.id

Abstrak

Perlindungan pada CPU mutakhir telah memperkenalkan berbagai rintangan. ARM telah memiliki
mekanisme "Pointer Authentication™ dan "Branch Target Identification” untuk menangani otentikasi
alamat memori dan pointer, dan kemudian Intel telah menindaklanjutinya dengan mekanisme Shadow
Stack dan Indirect Branch Targeting, yang juga dikenal sebagai Control-Flow Enforcement
Technology. Perlindungan ini membuat hampir mustahil untuk menggunakan metode code reuse biasa
seperti return-oriented programming (ROP) dan jump oriented programming (JOP). Penelitian ini
menunjukkan pendekatan baru untuk menggunakan Function-Oriented Programming (FOP) sebagai
teknik untuk digunakan dalam lingkungan tersebut. Demonstrasi FOP dalam kernel Linux menunjukkan
kemampuan FOP untuk unggul dalam situasi dunia nyata yang kompleks.

Kata kunci: function-oriented programming, gadgets, kernel, linux, proteksi.

Pendahuluan

Pada Return-Oriented Programming (ROP), penyerang menguasai tumpukan panggilan
untuk membajak alur kendali program, lalu mengeksekusi rangkaian instruksi mesin yang telah
dipilih dengan cermat, dan sudah ada di memori mesin, yang disebut gadget [1]. Setiap gadget
biasanya diakhiri dengan instruksi pengembalian dan terletak di dalam subrutin dalam kode program
dan/atau pustaka yang sudah ada. Jika dirangkai bersama, gadget-gadget ini memungkinkan
penyerang untuk melakukan operasi acak pada mesin yang menerapkan pertahanan yang dapat
menggagalkan serangan. Return-Oriented Programming (ROP) telah ada selama lebih dari 15 tahun
[2]. Sejak saat itu, teknik penggunaan ulang kode lainnya telah terbukti berhasil dalam keadaan
tertentu seperti Jump Oriented Programming (JOP) [3]. Seiring berkembangnya kedua teknik ini
dalam dekade terakhir, perlindungan baru telah diciptakan untuk membatasi kegunaannya. Beberapa
di antaranya termasuk Control-Flow Enforcement Technology (CET) [4] untuk prosesor Intel dan
Pointer Authentication (PAC) serta Branch Target Identification (BTI) [5] untuk prosesor ARM.
Tujuan dari perlindungan ini adalah untuk membatasi penggunaan serangan penggunaan ulang kode
seperti ROP dan JOP dalam suatu program.

BTI melibatkan penerapan langsung tujuan pendaratan spesifik untuk cabang tidak langsung,
baik berupa instruksi lompatan/panggilan register maupun memori. Biasanya ditempatkan di awal
fungsi yang rentan terhadap referensi tidak langsung, direktif landing pad ini berfungsi sebagai
pengaman. Pada prosesor Intel, instruksi landing pad ini adalah "'ENDBR64". Jika lompatan atau
panggilan tidak langsung gagal mendarat pada instruksi yang ditentukan, sebuah trap akan dipicu.
Langkah perlindungan ini bertujuan untuk mengurangi efektivitas serangan JOP. Functional
Oriented Programming (FOP) melibatkan penggunaan seluruh fungsi sebagai gadget. Berbeda
dengan konsep "gadget" dalam skenario ROP atau JOP, yang biasanya hanya terdiri atas beberapa
instruksi, seperti "POP RDI; RET;" klasik, FOP memperluas gadget untuk mencakup seluruh fungsi.

Tujuan pemanfaatan seluruh fungsi sebagai gadget adalah untuk memanfaatkan dua
kemampuan dari fungsi. Pertama, kemampuan untuk memanfaatkan suatu fungsi sebagaimana
mestinya. Contohnya, dengan mengendalikan dua parameter pemanggilan fungsi, seperti strcpy,
manipulasi nilai dalam memori menjadi mungkin; dan dapat diperluas ke fungsi apa pun yang
menyertakan instruksi landing pad awal di Glibc, seperti ‘mprotect” atau “syscall’. Kemampuan
kedua diperoleh melalui efek samping yang muncul dari pemanggilan suatu fungsi. Karena register
parameter biasanya dianggap volatil, memulihkan atau melindunginya tidak ada gunanya. Hal ini
mengakibatkan nilai register parameter berpotensi berguna setelah pemanggilan fungsi.

359

mailto:suryo.bramasto@iti.ac.id

TECHNOPEX-2025 Institut Teknologi Indonesia ISSN: 2654-489X

Kemampuan yang dijelaskan bergantung pada gadget dispatcher yang andal. Dalam contoh
yang disebutkan sebelumnya, dispatcher tidak boleh mengubah register-register dari argumen yang
sangat rentan berubah di antara pemanggilan gadget FOP. Makalah ini mengkaji dispatcher semacam
itu yang biasanya ditemukan dalam Glibc, dan dipanggil dalam eksekusi normal. Karena
pemanggilan fungsi dispatcher tidak memerlukan parameter, register parameter tidak diatur ulang di
antara pemanggilan. Hal ini memungkinkan gadget FOP berikutnya untuk menggunakan parameter
register yang ditetapkan oleh pemanggilan sebelumnya. Dengan menggunakan kerentanan kerusakan
memori dan dispatcher ini, rantai FOP dapat dibangun untuk mendapatkan eksekusi.

Studi Pustaka

Function-Oriented Programming (FOP) adalah evolusi dari kelas serangan code-reuse yang
sebelumnya dikenal lewat ROP (Return-Oriented Programming) dan JOP (Jump-Oriented
Programming). Ketika mitigasi seperti DEP/NX dan ASLR mencegah eksekusi kode yang
disuntikkan serta berbagai mekanisme lain memperkecil peluang gadget-level chaining, FOP muncul
sebagai pendekatan yang bekerja pada tingkat fungsi penuh: bukannya merangkai potongan instruksi
kecil (gadgets), FOP menyusun “program” jahat dengan memanggil fungsi-fungsi yang sudah ada di
binary atau library target. Karena menggunakan blok yang lebih besar dan mengikuti ABI/prolog-
epilog fungsi yang wajar, urutan panggilan fungsi yang dimanipulasi bisa tampak lebih natural dan
sulit dideteksi oleh teknik yang hanya mencari pola gadget.

Secara konseptual, proses FOP melibatkan identifikasi fungsi-fungsi yang berguna, misalnya
fungsi 1/O, alokasi memori, atau fungsi yang mengubah state, yang bila dikombinasikan dapat
mencapai tujuan seperti mengambil data sensitif atau memicu tindakan tertentu. Berbeda dengan
ROP/JOP yang fokus pada instruksi individu, FOP membutuhkan cara untuk memaksa program
memanggil fungsi-fungsi tersebut dalam urutan dan dengan argumen yang dikontrol, seringkali
melalui korupsi struktur data atau kontrol alur yang memengaruhi bagaimana dan kapan fungsi
dipanggil. Karena level abstraksinya lebih tinggi, FOP dapat melewati beberapa deteksi yang
dirancang khusus untuk gadget-level reuse dan menimbulkan tantangan baru bagi sistem mitigasi
yang hanya memeriksa target loncatan atau pola instruksi.

Secara formal, definisi kelas serangan FOP, terkategori menjadi kemampuan fungsi yang
bermanfaat bagi penyerang dan menunjukkan skenario teoretis atau simulasi di mana chaining fungsi
dapat memenuhi tujuan eksploitasi. Telah terdapat analisis tentang bagaimana mitigasi modern
seperti Control-Flow Integrity (CFI), shadow stacks, dan proteksi mikroarsitektur mempengaruhi
kemungkinan FOP, serta titik-kelemahan yang masih ada. Selain itu, perlu evolusi alat deteksi dan
teknik analisis otomatis. Detektor dan generator exploit generasi berikutnya perlu memahami
semantik fungsi dan representasi menengah (misal p-code/IR) agar dapat mengevaluasi kombinasi
fungsi yang mungkin disalahgunakan.

FOP memperluas permukaan serangan code-reuse karena banyak program memiliki fungsi-
fungsi yang, bila disusun bersama, dapat mencapai efek kompleks tanpa gadget-level chaining.
Mitigasi tradisional yang efektif melawan ROP/JOP tidak selalu cukup terhadap FOP; misalnya, CFI
yang hanya membatasi target control-flow mungkin masih mengizinkan urutan pemanggilan fungsi
yang sah namun disalahgunakan. Oleh karena itu, deteksi otomatis harus berevolusi untuk
mempertimbangkan konteks pemanggilan fungsi dan semantik panggilan, bukan sekadar pola
instruksi.

Dari perspektif defensif, memahami FOP penting untuk merancang proteksi yang lebih
efektif. Pendekatan defensif yang diusulkan meliputi penerapan CFI yang lebih halus dan berbasis
konteks (memverifikasi tidak hanya target pemanggilan tetapi juga konteks dan tipe argumen),
monitoring perilaku semantik untuk mendeteksi urutan panggilan fungsi yang tidak biasa,
pembatasan permukaan API sensitif melalui prinsip least privilege dan pemisahan hak istimewa,
serta penggunaan sandboxing dan teknik isolasi lain untuk membatasi dampak potensi
penyalahgunaan fungsi. Selain itu, penggabungan analisis statis dan dinamis yang memahami

360

TECHNOPEX-2025 Institut Teknologi Indonesia ISSN: 2654-489X

representasi menengah kode dapat membantu mengidentifikasi kombinasi fungsi yang
memungkinkan tindakan berbahaya.

Metodologi Penelitian

Metodologi penelitian yang diterapkan pada artikel ini diawali dengan menetapkan definisi
formal dan model ancaman FOP, guna merumuskan bagaimana serangan ini berbeda dari ROP/JOP
dan menetapkan asumsi-asumsi lingkungan misal ketersediaan fungsi di binary/library dan
kemampuan pengendalian data/struktur untuk memengaruhi pemanggilan fungsi). Selanjutnya
dilakukan inventarisasi dan Kklasifikasi building blocks pada tingkat fungsi yakni mengidentifikasi
kategori fungsi yang berguna bagi penyerang (1/O, alokasi/manipulasi memori, kontrol proses),
menganalisis ABI/calling-convention, dan bagaimana argumen dapat dikontrol melalui korupsi data
atau rekayasa struktur program.

Guna menemukan kandidat fungsi dan mengevaluasi apakah fungsi-fungsi itu dapat
“dirangkai”, metodologi yang dipakai meliputi analisis statis (disassembly, pembuatan CFG,
pencarian simbol/ekspor, analisis p-code/IR) dan analisis dinamis (instrumentasi runtime untuk
mengamati perilaku fungsi dan efek sampingnya). Automatic tooling digunakan untuk scanning
library/binary mencari fungsi yang memenuhi prasyarat tertentu. Selanjutnya disusun proof-of-
concept atau skenario simulasi (dalam lingkungan terisolasi) yang menunjukkan bagaimana chaining
fungsi dapat mencapai goal tertentu, misal membaca berkas sensitif atau memicu eksekusi proses,
kemudian mengevaluasi efektivitas mitigasi modern (CFl, ASLR, NX/DEP, shadow stacks,
SMEP/SMAP, dan lain-lain) terhadap teknik FOP.

Terakhir, disusun rangkuman implikasi defensif dengan merekomendasikan perbaikan
seperti CFl yang lebih halus/berbasis-konteks, monitoring semantik urutan panggilan, dan
pengurangan permukaan API, serta menunjukkan kebutuhan alat deteksi dan analisis otomatis yang
mengerti semantik fungsi (bukan hanya pola gadget instruksi) agar mitigasi dapat berkembang
menghadapi serangan bergranularitas-fungsi.

Hasil dan Pembahasan

Versi Linux kernel yang menjadi target pada penelitian ini adalah 5.19.17 (November 2022),
dimana telah mendukung penuh implementasi CET, dukungan penuh terhadap IBT untuk landing
pad, berikut mekanisme proteksi baru seperti fungsi prepare_kernel_cred. Mekanisme-mekanisme
proteksi yang ada pada kernel versi “baru” (setelah 5.18) membatasi rantai serangan ROP secara
signifikan dengan menerapkan mekanisme new check terhadap fungsi-fungsi yang sering menjadi
target serangan. Pada setiap serangan di tingkat kernel, keberhasilan serangan sangat bergantung
pada ketersediaan celah kerentanan yang memungkinkan utilisasi target-target potensial, dimana
pada kernel versi setelah 5.18 telah terdapat juga mekanisme yang menutup celah-celah kerentanan.

Dampak FOP terhadap kernel merupakan salah satu poin utama penelitian ini. Kemampuan
untuk mencapai serangan yang efektif menggunakan FOP gadgets, alih-alih ROP gadgets atau JOP
gadgets, merupakan definisi implementasi FOP yang sukses. Penelitian ini mengkaji primitif FOP
dalam target Libc untuk ruang pengguna, sehingga tidak terdapat perincian lengkap primitif untuk
bagian kernel Linux. Karena fleksibilitas dan variasi primitif berkorelasi langsung dengan jumlah
gadget yang ditemukan, basis kode yang lebih besar menyiratkan besarnya kapabilitas yang sama
atau lebih besar dibandingkan dengan primitif Libc. Mengingat kernel Linux berisi gadget hampir
sepuluh Kkali lebih banyak, penelitian ini menduga bahwa terdapat gadget yang cukup untuk
mendemonstrasikan primitif yang sama seperti yang diidentifikasi sebelumnya. Satu aspek tambahan
yang perlu diperhatikan adalah bahwa meskipun jumlah fungsi dan gadget potensial lebih besar,
tidak ada identifikasi gawai yang memungkinkan kemampuan untuk memanfaatkan nilai yang
disimpan dalam RAX. Keterbatasan ini terdapat baik di ruang pengguna maupun di ruang kernel
untuk sistem Intel. Gambar 1 menunjukkan rantai FOP akhir yang digunakan dalam kernel Linux
yang menghasilkan Linux privilege escalation.

361

TECHNOPEX-2025 Institut Teknologi Indonesia ISSN: 2654-489X

7 Dispatcher 1ot N
/
/ o)
[0 [Argumen! 0o prepare kemnel crod) < Prepare_jwmet_creaily
| PREFARE KERNEL CRED :)
\\‘ i Move A5 > RDI
3 Dispatcher Ind - . e '
, t
f MOV RDL RST; CALL ARG <> (_—
| Comimt_credsni_cred)
\ Function Pouder \ =
E} Desputcher 3l -
{ FORK .% o
|l 0 (fock argusnent) |
/
\ COMMIT CREDS “ | Wb 0w 100000
llI
;). Duspatcher dth o,
f MSLEEP o Legend:
| 0x 1000000 {maleep argument) @) - Dispatcher
\ &0 - First Gadget
'.\] - Second Gadget
\) - Third Gadget
1 D"P"hlm Fimnl J - Fourth Gadget

8 - Initladzation data
T - Unuased data

Dispateber Funetiva Fosoter 0

Gambar 1. Rantai kernel FOP di dalam memori

Kerentanan ini memungkinkan kerusakan memori melalui luapan heap, dimana penyerang
dapat mengendalikan struktur "msg_msg", yang mengakibatkan kebocoran kernel Linux dan alamat
heap kernel sehingga dapat melewati KASLR. Hal ini kemudian memungkinkan penimpaan struktur
"pipe_buffer" beserta "_ops pointer", yang mengakibatkan pemanggilan fungsi arbitrer dengan
register RSI yang menunjuk ke memori yang dikendalikan. PoC awal menerapkan teknik ini untuk
pivot tumpukan ke RSI dan memulai rantai ROP. Dalam contoh FOP ini, pivot ke dispatcher FOP
justru terjadi. Masalah yang muncul adalah tidak adanya identifikasi dispatcher FOP yang berasal
dari RSI selama pengujian. Untuk mengatasi masalah ini, diperlukan penggunaan perangkat pivot
dari RSI ke RDI seperti yang ditunjukkan pada Gambar 2, yang memungkinkan penggunaan
dispatcher yang ditunjukkan pada Gambar 1.

KERNEL Bxffffffffal3aafon:
Results:

RDI: @xFFFIFFFFFfFFfffc8 « [40 + RSI)

Symbolic Target:
[16 + [@x78 + [48 + RST]]]

Gambar 2. Gadget dari RSI pivot ke RDI

Setelah dispatcher dimulai, proses normal eskalasi kernel pun dimulai. Rantai FOP yang
ditunjukkan menggunakan fakta bahwa kontrol argumen pertama dalam panggilan ke
"prepare_kernel_cred" dengan argumen bernilai nol, mengembalikan salinan struktur kredensial
kernel. Tidak ada gadget yang memiliki kemampuan untuk menggunakan nilai dalam register RAX.
Dengan kata lain, struktur kredensial kernel yang dibuat oleh prepare_kernel cred yang
dikembalikan dalam RAX tidak berguna. Namun, "prepare_kenel_cred” memiliki efek samping
menyimpan struktur "init_cred" dalam register RSI setelah fungsi tersebut. Memindahkan pointer ke
RDI dan memanggil "commit_cred" memungkinkan rantai FOP untuk menetapkan privilage saat ini
ke root, sehingga menyelesaikan privilage escalation.

Kemampuan terakhir yang diciptakan adalah untuk berhasil kembali ke ruang pengguna
sebagai elevated user. Pendekatan ROP untuk kembali ke ruang pengguna adalah dengan menyimpan
status penyimpanan dalam tumpukan terkontrol dan kembali menggunakan fitur kernel yang
dirancang untuk kembali ke ruang pengguna. Agar tetap valid dengan spesifikasi tumpukan bayangan
yang ditetapkan sejauh ini, tidak ada modifikasi pada tumpukan yang dapat terjadi selama serangan,

362

TECHNOPEX-2025 Institut Teknologi Indonesia ISSN: 2654-489X

sehingga pendekatan ini tidak layak. Ada dua pendekatan yang dapat dilakukan rantai FOP untuk
kembali ke ruang pengguna. Yang pertama adalah merancang dispatcher di sepanjang rantai FOP
dan keluar dengan aman setelah semua eskalasi hak istimewa selesai. Hal ini dimungkinkan karena
kernel akan menganggap bahwa semuanya telah berjalan dengan benar karena tidak ada modifikasi
yang terjadi pada tumpukan atau ruang memori. Tetapi karena perangkat dispatcher yang digunakan
menggunakan R12 sebagai mekanisme penghitungan, maka menjadi ini tidak layak. Hal ini dapat
ditentukan melalui pengujian dan dengan melihat dispatcher pada Gambar 1 dan mengidentifikasi
bahwa register R12 diatur oleh RDI dan RSI. Dalam kasus ini, dispatcher RSI dan RDI mengarah ke
memori yang dikendalikan, sehingga R12 menjadi angka substansial yang tidak realistis untuk
diiterasi. Pendekatan kedua adalah memanfaatkan teknik telefork.

Teknik telefork beroperasi dengan memanggil fork system call dari dalam kernel.
Selanjutnya, tindakan ini memunculkan thread kedua di dalam aplikasi ruang pengguna tepat di titik
tempat eksploitasi awalnya berhenti. Sementara itu, thread asli tetap berada di dalam kernel Linux
dan diatur untuk menunggu tanpa batas waktu melalui fungsi msleep. Pengaturan ini mengakibatkan
kernel thread berhenti terkunci dan menciptakan kesan bahwa tidak ada yang berubah dari perspektif
eksternal. Karena pendekatan ini hanyalah pemanggilan fungsi normal, pendekatan ini merupakan
target utama untuk digunakan oleh FOP. Aspek terakhir ini memungkinkan serangan FOP untuk
berhasil kembali ke ruang pengguna, sehingga menghasilkan Linux privilage escalation yang
berhasil, yang dimungkinkan hanya dengan menggunakan gadget FOP.

Kesimpulan

Demonstrasi serangan FOP yang bekerja di dalam kernel Linux menunjukkan kemampuan
FOP untuk bekerja di lingkungan dunia nyata yang kompleks, dan membantu memperkuat FOP
sebagai teknik potensial yang ampuh untuk eksploitasi di masa mendatang dalam lingkungan modern
yang membatasi ROP dan serangan code reuse lainnya. Kontribusi ini digabungkan untuk memenubhi
pedoman penelitian ini dalam mendemonstrasikan kegunaan dan kapabilitas FOP.

Ucapan Terima kasih
Penelitian ini dibiayai oleh Institut Teknologi Indonesia Tahun Akademik 2025/2026.

Daftar Pustaka
[1] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN,” in Proceedings of the

49th Annual International Symposium on Computer Architecture, New York, NY,
USA: ACM, Jun. 2022, pp. 685-698. doi: 10.1145/3470496.3527429.

[2] S. Ognawala, F. Kilger, and A. Pretschner, “Compositional Fuzzing Aided by Targeted
Symbolic Execution,” Oct. 2019.

[3] R. C. Goluch, “Trust, transforms, and control flow: A graph-theoretic method to
verifying source and binary control flow equivalence,” lowa State University, 2021. doi:
10.31274/etd-20210609-59.

[4] M. Lipp et al., “Meltdown,” Commun ACM, vol. 63, no. 6, pp. 46-56, May 2020, doi:
10.1145/3357033.

[5] S. Matsuoka, “Fugaku and A64FX: the First Exascale Supercomputer and its Innovative
Arm CPU,” in 2021 Symposium on VLSI Circuits, IEEE, Jun. 2021, pp. 1-3. doi:
10.23919/VLSICircuits52068.2021.9492415.

363

